Rapid Energy Transfer Enabling Control of Emission Polarization in Perylene Bisimide Donor-Acceptor Triads.

نویسندگان

  • Christopher Menelaou
  • Jeroen ter Schiphorst
  • Amol M Kendhale
  • Patrick Parkinson
  • Michael G Debije
  • Albertus P H J Schenning
  • Laura M Herz
چکیده

Materials showing rapid intramolecular energy transfer and polarization switching are of interest for both their fundamental photophysics and potential for use in real-world applications. Here, we report two donor-acceptor-donor triad dyes based on perylene-bisimide subunits, with the long axis of the donors arranged either parallel or perpendicular to that of the central acceptor. We observe rapid energy transfer (<2 ps) and effective polarization control in both dye molecules in solution. A distributed-dipole Förster model predicts the excitation energy transfer rate for the linearly arranged triad but severely underestimates it for the orthogonal case. We show that the rapid energy transfer arises from a combination of through-bond coupling and through-space transfer between donor and acceptor units. As they allow energy cascading to an excited state with controllable polarization, these triad dyes show high potential for use in luminescent solar concentrator devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a new FRET system via combination of pyrene and perylene bisimide: synthesis, self-assembly and fluorescence behavior.

A new fluorescent derivative of cholesterol, N,N'-(N-(2-(3β-cholest-5-en-3yl-formamido)ethyl) pyrene-1-sulfonamido)ethyl perylene-3,4:9,10-tetracarboxylic acid bisimide (CPPBI), was designed and synthesized. In the design, pyrene (Py) and perylene bisimide (PBI) were specially chosen as the energy donor and the acceptor, respectively. Fluorescence studies revealed that (1) CPPBI shows a strong ...

متن کامل

Intramolecular energy transfer in a tetra-coumarin perylene system: influence of solvent and bridging unit on electronic properties.

The synthesis and characterisation of a novel coumarin donor-perylene bisimide acceptor light-harvesting system is reported, in which an energy-transfer efficiency of >99% is achieved. Comparison of the excited-state properties of the donor-acceptor system with model compounds revealed that although the photophysical properties of the perylene bisimide acceptor unit are affected considerably by...

متن کامل

Fluorescence quenching in an organic donor-acceptor dyad: a first principles study.

Perylene bisimide and triphenyl diamine are prototypical organic dyes frequently used in organic solar cells and light emitting devices. Recent Forster-resonant-energy-transfer experiments on a bridged organic dyad consisting of triphenyl diamine as an energy-donor and perylene bisimide as an energy-acceptor revealed a strong fluorescence quenching on the perylene bisimide. This quenching is ab...

متن کامل

Temperature‐Responsive Luminescent Solar Concentrators: Tuning Energy Transfer in a Liquid Crystalline Matrix

Temperature-responsive luminescent solar concentrators (LSCs) have been fabricated in which the Förster resonance energy transfer (FRET) between a donor-acceptor pair in a liquid crystalline solvent can be tuned. At room temperatures, the perylene bisimide (PBI) acceptor is aggregated and FRET is inactive; while after heating to a temperature above the isotropic phase of the liquid crystal solv...

متن کامل

An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Non-Fullerene Solar Cells.

A star-shaped electron acceptor based on porphyrin as a core and perylene bisimide as end groups was constructed for application in non-fullerene organic solar cells. The new conjugated molecule exhibits aligned energy levels, good electron mobility, and complementary absorption with a donor polymer. These advantages facilitate a high power conversion efficiency of 7.4 % in non-fullerene solar ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 6 7  شماره 

صفحات  -

تاریخ انتشار 2015